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MOTION OF A SOLID PARTICLE IN A ROTATING POTENTIAL FLOW

N. L. Zverev and 8. G. Ushakov
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It is shown that the process of stabilizing the motion of a particle in a
rotating potential flow takesthe form of aperiodic damped oscillations.

A possible motion in centrifugal equipment is equi-
librium steady-state circular motion under the action
of equal and opposite centrifugal and drag forces. The
radius Ty of the circle is determined by the dimen-
sions of the particle and the flow, the flow velocity,
and the physical constants of the gas and the particle.
It is often assumed [1, 2] that if for a given particle
Tin < Tp < rout (Tin and royt are the radii of the
central outlet and outer wall of the equipment, re-
spectively), the particle revolves indefinitely around
this equilibrium circle and will enter the fine or
coarse fraction only as a result of various random
influences: collisions with other particles, turbulent
fluctuations of the flow, ete.

We attempted a more complete investigation of the
motion of a spherical particle in a plane rotating flow
with central outlet and vertical axis.

The differential equations of motion of a dust
particle in polar coordinates r, ¢ have the form
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To these equations we must add the two kinematic
equations
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dt r

Dividing (3), (4), and (5) by (8) and expressing r, v,
and w in terms of the characteristic quantities ry and
vy, we obtain the following system of dimensionless
differential equations of motion of a dust particle:

do W
R A r, 7
do pW‘p (N
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Consider the case of potential rotation

V :_1’ Vr=_ tga ’
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where tg o = Vy/ V.
If for steady-state rotation of the particle we set
dw

,
W0, W,=0, W, =V, p=op, =2,
do r ® o P=pPp o

in (8), we obtain

R _3/RE

for the dimensionless critical velocity in the centrif-
ugal force field;

3
p— VStR

3 ———
Pp —]/’lPRe

is the dimensionless particle diameter.
After evaluating U we find Re, y, D from tables of
the function ¥ = f(Re) and then pp.

Fig. 1. Particle trajectories in a rotating potential flow (St = 32, R = 64):
a)tg o = 0.3; b) 1.0; c) 3.0.
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Fig. 2. Maximum particle overshoot as a
function of the characteristic parameters:
1) tg @ = 0.65 2) 0.7; 3) 0.8; 4) 0.9; 5) 1.0;
6) 1.2; 7) 1.4; 8) 1.6; 9) 1.8; 10) 2.0;

11) 2.6; 12) 3.0,

/ 2 g

Fig. 3. Logarithmic decrement

as a function of the character-

istic parameters: 1) tg a = 1.6;
2) 2.0; 3) 3.0.
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We assume that the particle is introduced into the
flow at the point ¢y = 0, py =2pp with a velocity equal
to the flow velocity at that point.

System (7)=-(9) was integrated numerically by a
modified Runge-Kutta method, The values of § are
experimental and were taken from y = f(Re) tables,
The Re number was calculated from the equation

Re =RV (V,— W)+ (V, — W)

The calculations were carried out on a "Ural-2"
computer. The computation error was £ = 0.00001,
A total of 260 variants were calculated for various
values of the parameters

St=10""—4.10°, R=10""-1.3.10"
tga =0.3— 3.0.

The typical particle trajectories presented in
Fig, 1la,b,¢ correspond to identical values of the
parameters St =32 and R = 64, but different values
of tg o (tg a = 0.3, 1.0, 3.0), The radius is expressed
in fractions of pp.

From an inspection of the trajectories we draw the
following conclusions:

1) the particle approaches the steady state(p = pp =
= const) by a process of aperiodic, rapidly damped
oscillations, with inertial overshoots on both sides of
the equilibrium trajectory, and

2) the overshoots increase sharply as the degree
of twist decreases (ig « increases).

The maximum overshoot h; (Fig, 1c) as a function
of 8t and R is represented by a family of curves, If
we substitute for St and R the derived parameters
C = RY/St = Reg(py/pa) (where Reg = (3/4)(VegyToP1/n)
is the Reynolds number for the flow) and A = St/R =
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= (4/3)(6p3/1ypy), then for each tg o the values of hy
fit a single curve (Fig. 2), i.e., in this case the pro-
cess is self-similar with respect to the parameter A,

As C increases, the maximum inertial overshoot
decreases and the logarithmic decrement of the par-
ticle oscillations % = In(hy/hy) grows (Fig. lc, 3),
i.e,, the steady state of motion along the equilibrium
trajectory is more rapidly approached.

NOTATION

5 and p, are the diameter {m) and the density (kg/
/m?) of a dust particle;  and p; are the dynamic vis-
cosity (N- sec/m?) and density (kg/m’) of the gas;
m is the mass of a dust particle (kg); w and v are the
velocities of the dust particle and the gas (m/sec),
respectively; u is the gas velocity relative to a dust
particle (m/sec); j is the acceleration of the dust par-
ticle (m/secz); ¥ is the drag force (N); t is the time
(sec); ¢ and ¥ are the quadratic and linear drag co-
efficients; Re = udpy/7 is the Reynolds number for the
dust particle; St = 462V¢0p2 /371y is the Stokes number;
R= 6v¢0p1/17 is a dimensionless number; V = v/v,
W = w/vy are the dimensionless gas and dust particle
velocities; and p = v/rp is the dimensionless radius,
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